
COMP 520 - Compilers

Lecture 12 – Runtime Organization + Hardware

1

Grades on Canvas
• I have added your grades to canvas. If something is

missing or incorrect, let me know.

• If you turned in an assignment late, it is likely incorrect
on canvas and I will fix it as soon as I can.

2
COMP 520: Compilers – S. Ali

Today’s Goals
• Be convinced that assembly, hardware, and the CPU in

general is not magic

3
COMP 520: Compilers – S. Ali

Today’s Goals
• Be convinced that assembly, hardware, and the CPU in

general is not magic

• First: Simple hardware organization (COMP-541)
• Second: Modern CPU organization (COMP-311)
• Lastly: x86 assembly

4
COMP 520: Compilers – S. Ali

Goals
• Be convinced that assembly, hardware, and the CPU in

general is not magic

• First: Simple hardware organization (COMP-541/311)
• Second: Modern CPU organization (COMP-311)
• Lastly: x86 assembly

5
COMP 520: Compilers – S. Ali

Not tested in this class,
covered for your benefit

Goals
• Be convinced that assembly, hardware, and the CPU in

general is not magic

• First: Simple hardware organization (COMP-541/311)
• Second: Modern CPU organization (COMP-311)
• Lastly: x86 assembly

6
COMP 520: Compilers – S. Ali

This will be VERY useful
when working on PA4,

covered for your benefit

Goals
• Be convinced that assembly, hardware, and the CPU in

general is not magic

• First: Simple hardware organization (COMP-541/311)
• Second: Modern CPU organization (COMP-311)
• Lastly: x86 assembly

7
COMP 520: Compilers – S. Ali

This is PA4

Demystifying Hardware
An extended commercial for COMP-541

8
COMP 520: Compilers – S. Ali

Some coverage of the ALU
• In the interest of time, will only cover some parts of

the ALU (Arithmetic Logic Unit)
• Specifically, let’s cover the adder (where a subtracter

is just a small, clever modification)

9
COMP 520: Compilers – S. Ali

Not Tested Material

What is 2’s complement?

10
COMP 520: Compilers – S. Ali

Not Tested Material

What is 2’s complement?
Bits Unsigned value Signed value

(Two's complement)
0000 0000 0 0

0000 0001 1 1

0000 0010 2 2

0111 1110 126 126

0111 1111 127 127

1000 0000 128 −128

1000 0001 129 −127

1000 0010 130 −126

1111 1110 254 −2

1111 1111 255 −1

11
COMP 520: Compilers – S. Ali

Not Tested Material

Motivation: Example Goal

•Add the following:
0000 0101

+ 0000 1101

12
COMP 520: Compilers – S. Ali

Not Tested Material

Let’s first focus on single bit addition

13
COMP 520: Compilers – S. Ali

0 + 0 0 + 1 1 + 0 1 + 1

Not Tested Material

Let’s first focus on single bit addition

14
COMP 520: Compilers – S. Ali

0 + 0
0

0 + 1
1

1 + 0 1 + 1

Not Tested Material

Let’s first focus on single bit addition

15
COMP 520: Compilers – S. Ali

0 + 0
0

0 + 1
1

1 + 0
1

1 + 1
10?

Not Tested Material

1+1 Gets an entire slide!
•Let’s rewrite this:

1+1 = 0 (carry 1)

16
COMP 520: Compilers – S. Ali

Not Tested Material

Let’s first focus on single bit addition

17
COMP 520: Compilers – S. Ali

0 + 0
0 c0

0 + 1
1 c0

1 + 0
1 c0

1 + 1
0 c1

Not Tested Material

Motivation: Example Goal

•Add the following:
0000 0101

+ 0000 1101

0c1

18
COMP 520: Compilers – S. Ali

Not Tested Material

Let’s first focus on single bit addition

19
COMP 520: Compilers – S. Ali

0 + 0 + c1
1 c0

0 + 1 + c1 1 + 1 + c1

Not Tested Material

Let’s first focus on single bit addition

20
COMP 520: Compilers – S. Ali

0 + 0 + c1
1 c0

0 + 1 + c1
0 c1

1 + 1 + c1
1 c1

Not Tested Material

Motivation: Example Goal

•Add the following:
0000 0101 5

+ 0000 1101 +13

0001 0010 18

21
COMP 520: Compilers – S. Ali

Not Tested Material

Can we come up with something
more formal? What does this
look like in hardware?

22
COMP 520: Compilers – S. Ali

Truth Tables (COMP-283)

𝐴𝐴 0 0 1 1 0 0 1 1
𝐵𝐵 0 1 0 1 0 1 0 1
𝐶𝐶𝑖𝑖𝑖𝑖 0 0 0 0 1 1 1 1
𝑆𝑆 0 1 1 0 1 0 0 1

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 0 0 0 1 0 1 1 1

23
COMP 520: Compilers – S. Ali

Not Tested Material

Truth Tables (COMP-283)

𝐴𝐴 0 0 1 1 0 0 1 1
𝐵𝐵 0 1 0 1 0 1 0 1
𝐶𝐶𝑖𝑖𝑖𝑖 0 0 0 0 1 1 1 1
𝑆𝑆 0 1 1 0 1 0 0 1

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 0 0 0 1 0 1 1 1

24
COMP 520: Compilers – S. Ali

If odd number of 1s: S=1, otherwise S=0
What is the boolean logic look like?

Not Tested Material

Truth Tables (COMP-283)

𝐴𝐴 0 0 1 1 0 0 1 1
𝐵𝐵 0 1 0 1 0 1 0 1
𝐶𝐶𝑖𝑖𝑖𝑖 0 0 0 0 1 1 1 1
𝑆𝑆 0 1 1 0 1 0 0 1

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 0 0 0 1 0 1 1 1

25
COMP 520: Compilers – S. Ali

𝑆𝑆 = 𝐶𝐶𝑖𝑖𝑖𝑖 ⊕ 𝐴𝐴⊕𝐵𝐵
Where ⊕ ≡ exclusive or

Not Tested Material

Adder Boolean Algebra
•𝑆𝑆 = 𝐶𝐶𝑖𝑖𝑖𝑖 ⊕ 𝐴𝐴⊕𝐵𝐵
•𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐶𝐶𝑖𝑖𝑖𝑖 ∧ A ⊕𝐵𝐵 ∨ A ∧ B

•And what can we do with boolean algebra?

26
COMP 520: Compilers – S. Ali

Not Tested Material

Single Bit Adder

27
COMP 520: Compilers – S. Ali

A B

C

S

A B

C A B

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜
Not Tested Material

1-Bit Adder

28
COMP 520: Compilers – S. Ali

A B

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 𝐶𝐶𝑖𝑖𝑖𝑖

S
Not Tested Material

4-Bit Adder

29
COMP 520: Compilers – S. Ali

𝐴𝐴0 𝐵𝐵0

𝑆𝑆0

𝐴𝐴1 𝐵𝐵1

𝑆𝑆1

𝐴𝐴2 𝐵𝐵2

𝑆𝑆2

𝐴𝐴3 𝐵𝐵3

𝑆𝑆3
Not Tested Material

CF

Adder Input/Output

A=0000 0101 5

+B=0000 1101 +13

S=0001 0010 18

Where 18= 𝑺𝑺𝟎𝟎 + 𝟐𝟐𝑺𝑺𝟏𝟏 + 𝟒𝟒𝑺𝑺𝟐𝟐 + ⋯
Aka, 𝑺𝑺 = ∑𝒊𝒊 𝑺𝑺𝒊𝒊 ⋅ 𝟐𝟐𝒊𝒊

30
COMP 520: Compilers – S. Ali

Not Tested Material

Thus, Hardware IS NOT Magic
•Addition is not magic,
it is simple simple circuitry

•But it would be a stretch to say that
“the rest of the hardware follows similarly”

•If you are curious, see COMP-541
31

COMP 520: Compilers – S. Ali

Not Tested Material

CPU Organization

32
COMP 520: Compilers – S. Ali

Cache Hierarchy

33
COMP 520: Compilers – S. Ali (Credit: J. H. Anderson)

L1 Cache: Paper on Desk

L2 Cache: Go to bookshelf

L3: Go to local library

RAM: It’s in another
library in North Carolina

Storage access time
1) Head to the North Atlantic Ocean
2) Sail to London
3) Go to Oxford
4) Wait in line for the Oxford English dictionary,
make copies of what you need
5) Sail back

34
COMP 520: Compilers – S. Ali (Credit: J. H. Anderson)

Thankfully, Memory is Memory
• From the perspective of the machine code, accessing

memory looks the same (not counting page faults, for
that, see COMP-530 and 630 to implement it)

• This means we don’t consider “where” memory is in
cache to be relevant when writing machine code

• All handled by the hardware to be nearly invisible

35
COMP 520: Compilers – S. Ali

So what types of memory DO we worry about?

• Stack
• Heap

• Segments:
.text (Executable section)
.bss (Uninitialized static data)
.data (Initialized static data)

36
COMP 520: Compilers – S. Ali

We will discuss .idata
and other segments later

Data Segment
• Consider static elements such as:

class A {

private static int a = 0;

private static String b = “Hello World”;

}

37
COMP 520: Compilers – S. Ali

Variable data known before runtime

private static int a = 0;

private static String b = “Hello World”;

So instead of having to do an initialization step:
“Store 0 at data 0x5000”,
“Store ‘Hello World\0’ at data 0x5004”

38
COMP 520: Compilers – S. Ali

Variable data known before runtime

private static int a = 0;

private static String b = “Hello World”;

So instead of having to do an initialization phase:
“Store 0 at data 0x5000”,
“Store ‘Hello World\0’ at data 0x5004”

Just store the raw data directly!

39
COMP 520: Compilers – S. Ali

XVI32 Example

40
COMP 520: Compilers – S. Ali

If you open an executable file in notepad…

XVI32 Example

41
COMP 520: Compilers – S. Ali

Various Strings
The number 1, and 15

Idea: Take chunk of data and load it in memory

• Chunk of data (“.data”) in executable:
int a = 4; int b = 5; String c = “Hello”;

And when our program is running, it sees this data
in the same ordered form, s.t.,
MemPos+0x00 = int a MemPos+0x08= String c
MemPos+0x04 = int b

42
COMP 520: Compilers – S. Ali

Uninitialized Memory (.bss)

• Static memory that is initialized to zero
• Described by a single number usually

43
COMP 520: Compilers – S. Ali

Uninitialized Memory (.bss)

• Static memory that is initialized to zero
• Described by a single number usually
• “I need 4096 bytes of data initialized to zero”
static int a; static int b; static String c;

None initialized. Respectively, positions:
.bss+0, .bss+4, .bss+8 will contain our variables a, b, c.

44
COMP 520: Compilers – S. Ali

Planning!
• Before we talk about .text, stack, and heap, we will

first talk about some x86 basics

45
COMP 520: Compilers – S. Ali

x86-64 Basics

46
COMP 520: Compilers – S. Ali

Instructions

• Each “command” that you issue to a processor is an
instruction.

• For example, “store this variable there” or “load this
data”.

• Each instruction is a very simple operation.

47
COMP 520: Compilers – S. Ali

Register File
• Lots of registers, but here are the 6 general purpose

registers that we are concerned with:

rax, rcx, rdx, rbx, rsi, rdi

48
COMP 520: Compilers – S. Ali

Registers are like variables
• That’s right, we’re pretty much going to do everything

simple in 6 registers, and a few extra registers for
additional functionality

49
COMP 520: Compilers – S. Ali

Instructions Location?
• The serialized instructions are contained in a .text

segment.
• Not always called .text, but we will refer to “the .text

segment” with the assumption that it is the relevant
executable segment.

50
COMP 520: Compilers – S. Ali

Where am I?
• Some extremely special purpose registers that aren’t

interacted with directly.
• Example: rip

• Instruction pointer (points to the memory address of
the current instruction)

51
COMP 520: Compilers – S. Ali

Load/Store memory
mov rax,[rsi+0048]

mov [rsi+0048],rax

This notation is ambiguous, but acceptable shorthand

52
COMP 520: Compilers – S. Ali

Load/Store memory
mov rax,[rsi+0048]

mov [rsi+0048],rax

v.s.
mov rax, qword[rsi+0048]

mov qword[rsi+0048],rax

Better! Size of storage is known
53

COMP 520: Compilers – S. Ali

Load/Store memory
mov rax,qword[4AD664]

Idea: Find memory location,
put 8 bytes of data in rax

rax assigned value 0x0600000608 (leading 00s omitted)

54
COMP 520: Compilers – S. Ali

Add/Subtract
add rax,rdx // rax += rdx

add rcx,5 // rcx += 5

sub rax,1 // rax -= 1

55
COMP 520: Compilers – S. Ali

Jump/Branch

jmp rax

jmp 4000 0096

Unconditional Jump (not very interesting)
Jump to some other location in executable code

56
COMP 520: Compilers – S. Ali

Jump/Branch

cmp eax,0 // Compare eax to 0

// Will set conditional flags

CF, PF, AF, ZF, SF, OF

ZF ≡ “Is previous comparison zero?”

57
COMP 520: Compilers – S. Ali

CFLAGs

CF, PF, AF, ZF, SF, OF

Idea: When comparing two parameters, generate
everything! Are they equal? Is a<b? Etc.

58
COMP 520: Compilers – S. Ali

CFLAGs

CF, PF, AF, ZF, SF, OF

Idea: When comparing two parameters, generate
everything! Are they equal? Is a<b? Etc.

The actual operation: a-b
If it is zero (ZF), they are equal. If positive (¬SF): a>b;
If negative (SF): a<b; If positive (¬SF) OR ZF: a≥b; etc.

59
COMP 520: Compilers – S. Ali

Jump/Branch

jge,jg, jle, jl, je/jz, jne/jnz

In order: “Jump if… ≥, >,≤, <, =,≠ “

60
COMP 520: Compilers – S. Ali

Comparison of code

Code that you see

if(rax == 3)

rcx = 4;

else

rcx = 5;

print(rcx)

Code that CPU sees

cmp rax,3

je IsEqual

mov rcx,5

jmp End

IsEqual: mov rcx,4

End: push rcx

call print

61
COMP 520: Compilers – S. Ali

More on this later

• We will cover branching in more depth on Thursday
• For now, let’s go back to .text, stack, and heap

62
COMP 520: Compilers – S. Ali

Stack pointer(s)

rsp, rbp

rsp= stack pointer

rbp= stack base pointer

63
COMP 520: Compilers – S. Ali

Stack pointer(s)

rsp, rbp

rsp= stack pointer

rbp= stack base pointer

Used for: (1) parameters in a function call,
(2) temporary variables, (3) stack framing for more
temp variables, and more!

64
COMP 520: Compilers – S. Ali

Stack Growth

Push/Pop data on/off the stack.

Each “entry” is 8 bytes
in this example.

For 32-bit,
it would be 4 bytes.

65
COMP 520: Compilers – S. Ali

0

0

0

4

65535

RSP

RBP

THE STACK

Stack Growth

Shown in the stack on the right.
Unintuitively, higher positions
are at lower memory addresses.

E.g. the number “4”
is at rbp-8, not rbp+8,
or rsp+8, not rsp-8

66
COMP 520: Compilers – S. Ali

0

0

0

4

65535

RSP

RBP

Stack Growth

Shown in the stack on the right.
Unintuitively, higher positions
are at lower memory addresses.

E.g. the number “4”
is at rbp-8, not rbp+8,
or rsp+8, not rsp-8
Question: Why can’t the
stack grow + instead of -?

67
COMP 520: Compilers – S. Ali

0

0

0

4

65535

RSP

RBP

Local Variables

• First covered usage of the stack: local variables!

68
COMP 520: Compilers – S. Ali

Local Variables

• Local variables in a method are not a static variable in
.bss, nor .data

• Two methods: use the heap (shown later), use the
stack (recommended)

• Question: Why not give every local a location in bss?

69
COMP 520: Compilers – S. Ali

Local Variables

Consider:

push 4
70

COMP 520: Compilers – S. Ali

4

Some other var

RIP

RSP

RSP

RBP

Local Variables

Consider:

mov [rbp-8],5
71

COMP 520: Compilers – S. Ali

4 -> 5

Some other var

RIP

RSP

RBP

Local Variables

Consider:

mov [rbp-8],5
72

COMP 520: Compilers – S. Ali

5

Some other var

RIP

RSP

RBP

Next use of the stack

• How can we pass parameters to a method?

a = 3; b = 5;

someMethod(a, b);

73
COMP 520: Compilers – S. Ali

Stack pointer(s)

rsp, rbp

someMethod(int a, int b);
push dword[b]

push dword[a]

call someMethod

74
COMP 520: Compilers – S. Ali

Stack pointer(s) – How to call a method

rsp, rbp

someMethod(a, b);
push dword[b]

push dword[a]

call someMethod

75
COMP 520: Compilers – S. Ali

[b] = 5

Some other var

RIP

RBPRSP

RSP

Stack pointer(s) – How to call a method

rsp, rbp

someMethod(a, b);
push dword[b]

push dword[a]

call someMethod

76
COMP 520: Compilers – S. Ali

[a] = 3

[b] = 5

Some other var

RIP

RBP

RSP

RSP

Stack pointer(s) – How to call a method

rsp, rbp

someMethod(a, b);
push dword[b]

push dword[a]

call someMethod

…

77
COMP 520: Compilers – S. Ali

Return Address

[a] = 3

[b] = 5

Some other var
RIP

RBP

RSP

RSP

Return Address

Stack pointer(s) – How to call a method

rsp, rbp

At the end of someMethod:
ret

“Take address at top of stack”
“Set RIP to be that address”
“Pop the top of the stack”

78
COMP 520: Compilers – S. Ali

Return Address

[a] = 3

[b] = 5

Some other varRBP

RSP
RIP

Stack pointer(s) – How to call a method

rsp, rbp

someMethod(a, b);
push dword[b]

push dword[a]

call someMethod

add rsp,16

79
COMP 520: Compilers – S. Ali

Return Address

[a] = 3

[b] = 5

Some other varRSP,RBP

RSP

RIP

What does a CALLED method look like?

• Stack framing will be covered in an upcoming lecture

• Idea: “keep our local variables in the stack,
then when we call a method, create a new ‘frame’
where that method can store ITS OWN local variables”

80
COMP 520: Compilers – S. Ali

Stack Framing will be a separate lecture

• I know it feels strange to keep saying
“this will be done later”

• But some of these are heavy topics that need some
separation (aka, breathing room)

81
COMP 520: Compilers – S. Ali

Stack Framing will be a separate lecture

• I know it feels strange to keep saying “this will be
done later”

• But some of these are heavy topics that need some
separation (aka, breathing room)

• For now, focus on the basics, and the nitty gritty
details (which are actually the most interesting)
will be thoroughly investigated, rest assured.

82
COMP 520: Compilers – S. Ali

Lastly, pop

• Very straight forward,

1) Reads the value at the top of the stack (rsp),
stores it in some destination register

pop rcx

2) Adds 8 to rsp

83
COMP 520: Compilers – S. Ali

Back to memory organization

84
COMP 520: Compilers – S. Ali

.text Segment
• As specified earlier, this is where code is stored

• Question: can code exist in other segments?
What about non-executable segments?

85
COMP 520: Compilers – S. Ali

Static vs Dynamic memory

• But where is THIS data stored?

int[] p = new int[someVariableSize];

Doesn’t fit our notions of .bss nor .data! (Why?)
If we use the stack, then we consume

a ton of stack space.

86
COMP 520: Compilers – S. Ali

Dynamic memory is in the heap

int[] p = new int[someVariableSize];

The heap is just a memory location.
Simplest heap possible:

87
COMP 520: Compilers – S. Ali

Super-simple heap

88
COMP 520: Compilers – S. Ali

Heap Ptr

Heap Base: 0x8000 0000

Heap End: 0x8FFF FFFF

Super-simple heap

89
COMP 520: Compilers – S. Ali

Heap Ptr

I want 3072 bytes of data!
 malloc(3072)
 new char[3072]

Heap Base: 0x8000 0000

Heap End: 0x8FFF FFFF

Super-simple heap

90
COMP 520: Compilers – S. Ali

Heap Ptr

I want 3072 bytes of data!
 malloc(3072)
 new char[3072]

Returned start of allocated memory Heap Base: 0x8000 0000

Heap End: 0x8FFF FFFF

What does this look like?

Consider:

91
COMP 520: Compilers – S. Ali

How is something returned?

• Assume [rbp+0E8h] is the variable a
• Where is the returned value from the “new”

operation?

92
COMP 520: Compilers – S. Ali

How is something returned?

• Assume [rbp+0E8h] is the variable a
• Where is the return value from the “new” operation?

93
COMP 520: Compilers – S. Ali

FASTCALL,
but assume push 8

Assumptions
• We will assume that all functions/methods return

their value in rax
• So rax will be “reserved” when doing a call, but

general purpose otherwise

94
COMP 520: Compilers – S. Ali

What does this look like?

Consider:

95
COMP 520: Compilers – S. Ali

push 8
call malloc
mov [a], rax

What does this look like?

Consider:

96
COMP 520: Compilers – S. Ali

push 8
call malloc
mov [a], rax
mov [rax+0],3

What does this look like?

Consider:

97
COMP 520: Compilers – S. Ali

push 8
call malloc
mov [a], rax
mov [rax+0],3
mov [rax+4],5

Field variables are offsets

98
COMP 520: Compilers – S. Ali

x: From some base address, add +0

y: From some base address, add +4

So how did we figure out the alloc size of “A”?

• It has two variables, both of
them are int, so assume
int means 4 bytes (we will
assume 8 bytes in miniJava),
then the alloc size of A will
be 8 bytes total.

99
COMP 520: Compilers – S. Ali

So how did we figure out the alloc size of “A”?

• It has two variables, both of
them are int, so assume
int means 4 bytes (we will
assume 8 bytes in miniJava),
then the alloc size of A will
be 8 bytes total.

• Thus: push 8
call malloc

100
COMP 520: Compilers – S. Ali

Coming up next!
• How can we handle a.b.c.d.x?

• What about classes like this:
• What is their size?
• (How many bytes is allocated

when creating a new A()?)

101
COMP 520: Compilers – S. Ali

Review

102
COMP 520: Compilers – S. Ali

Review Lec 12
• Basic assembly operations: mov from memory, add,
subtract, store to memory (mov), call, push, pop,
jmp, cmp, conditional jumps (jle,jl,jge,jg,je,jne)

• Know about stack, heap, .bss, .data, .text

103
COMP 520: Compilers – S. Ali

Thursday
• Live demo of branching

• Will step through the assembly and show it in action
• Will prove that assembly is just like any other thing

you have programmed

104
COMP 520: Compilers – S. Ali

End

105

106
COMP 520: Compilers – S. Ali

107
COMP 520: Compilers – S. Ali

108
COMP 520: Compilers – S. Ali

109
COMP 520: Compilers – S. Ali

	COMP 520 - Compilers
	Grades on Canvas
	Today’s Goals
	Today’s Goals
	Goals
	Goals
	Goals
	Demystifying Hardware
	Some coverage of the ALU
	What is 2’s complement?
	What is 2’s complement?
	Motivation: Example Goal
	Let’s first focus on single bit addition
	Let’s first focus on single bit addition
	Let’s first focus on single bit addition
	1+1 Gets an entire slide!
	Let’s first focus on single bit addition
	Motivation: Example Goal
	Let’s first focus on single bit addition
	Let’s first focus on single bit addition
	Motivation: Example Goal
	Can we come up with something more formal? What does this look like in hardware?
	Truth Tables (COMP-283)
	Truth Tables (COMP-283)
	Truth Tables (COMP-283)
	Adder Boolean Algebra
	Single Bit Adder
	1-Bit Adder
	4-Bit Adder
	Adder Input/Output
	Thus, Hardware IS NOT Magic
	CPU Organization
	Cache Hierarchy
	Storage access time
	Thankfully, Memory is Memory
	So what types of memory DO we worry about?
	Data Segment
	Variable data known before runtime
	Variable data known before runtime
	XVI32 Example
	XVI32 Example
	Idea: Take chunk of data and load it in memory
	Uninitialized Memory (.bss)
	Uninitialized Memory (.bss)
	Planning!
	x86-64 Basics
	Instructions
	Register File
	Registers are like variables
	Instructions Location?
	Where am I?
	Load/Store memory
	Load/Store memory
	Load/Store memory
	Add/Subtract
	Jump/Branch
	Jump/Branch
	CFLAGs
	CFLAGs
	Jump/Branch
	Comparison of code
	More on this later
	Stack pointer(s)
	Stack pointer(s)
	Stack Growth
	Stack Growth
	Stack Growth
	Local Variables
	Local Variables
	Local Variables
	Local Variables
	Local Variables
	Next use of the stack
	Stack pointer(s)
	Stack pointer(s) – How to call a method
	Stack pointer(s) – How to call a method
	Stack pointer(s) – How to call a method
	Stack pointer(s) – How to call a method
	Stack pointer(s) – How to call a method
	What does a CALLED method look like?
	Stack Framing will be a separate lecture
	Stack Framing will be a separate lecture
	Lastly, pop
	Back to memory organization
	.text Segment
	Static vs Dynamic memory
	Dynamic memory is in the heap
	Super-simple heap
	Super-simple heap
	Super-simple heap
	What does this look like?
	How is something returned?
	How is something returned?
	Assumptions
	What does this look like?
	What does this look like?
	What does this look like?
	Field variables are offsets
	So how did we figure out the alloc size of “A”?
	So how did we figure out the alloc size of “A”?
	Coming up next!
	Review
	Review Lec 12
	Thursday
	End
	Slide Number 106
	Slide Number 107
	Slide Number 108
	Slide Number 109

